Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 47(17): 4907-15, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18376851

RESUMO

The present study reports distinct dynamic consequences for the T- and R-states of human normal adult hemoglobin (Hb A) due to the binding of a heterotropic allosteric effector, inositol hexaphosphate (IHP). A nuclear magnetic resonance (NMR) technique based on modified transverse relaxation optimized spectroscopy (TROSY) has been used to investigate the effect of conformational exchange of Hb A in both deoxy and CO forms, in the absence and presence of IHP, at 14.1 and 21.1 T, and at 37 degrees C. Our results show that the majority of the polypeptide backbone amino acid residues of deoxy- and carbonmonoxy-forms of Hb A in the absence of IHP is not mobile on the micros-ms time scale, with the exception of several amino acid residues, that is, beta109Val and beta132Lys in deoxy-Hb A, and alpha40Lys in HbCO A. The mobility of alpha40Lys in HbCO A can be explained by the crystallographic data showing that the H-bond between alpha40Lys and beta146His in deoxy-Hb A is absent in HbCO A. However, the conformational exchange of beta109Val, which is located in the intradimer (alpha 1beta 1 or alpha 2beta 2) interface, is not consistent with the crystallographic observations that show rigid packing at this site. IHP binding appears to rigidify alpha40Lys in HbCO A, but does not significantly affect the flexibility of beta109Val in deoxy-Hb A. In the presence of IHP, several amino acid residues, especially those at the interdimer (alpha 1beta 2 or alpha 2beta 1) interface of HbCO A, exhibit significant conformational exchange. The affected residues include the proximal beta92His in the beta-heme pocket, as well as some other residues located in the flexible joint (betaC helix-alphaFG corner) and switch (alphaC helix-betaFG corner) regions that play an important role in the dimer-dimer rotation of Hb during the oxygenation process. These findings suggest that, upon IHP binding, HbCO A undergoes a conformational fluctuation near the R-state but biased toward the T-state, apparently along the trajectory of its allosteric transition, accompanied by structural fluctuations in the heme pocket of the beta-chain. In contrast, no significant perturbation of the dynamic features on the ms-micros time scale has been observed upon IHP binding to deoxy-Hb A. We propose that the allosteric effector-induced quaternary structural fluctuation may contribute to the reduced ligand affinity of ligated hemoglobin. Conformational exchange mapping of the beta-chain of HbCO A observed at 21.1 T shows significantly increased scatter in the chemical exchange contribution to the transverse relaxation rate ( R ex) values, relative to those at lower fields, due to the enhanced effect of the local chemical shift anisotropy (CSA) fluctuation. A spring-on-scissors model is proposed to interpret the dynamic phenomena induced by the heterotropic effector, IHP.


Assuntos
Hemoglobina A/química , Hemoglobina A/metabolismo , Ácido Fítico/metabolismo , Ácido Fítico/farmacologia , Regulação Alostérica/efeitos dos fármacos , Carboxihemoglobina/metabolismo , Dimerização , Heme/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Movimento , Ligação Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Fatores de Tempo
2.
Biochemistry ; 46(23): 6795-803, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17497935

RESUMO

Model-free-based NMR dynamics studies have been undertaken for polypeptide backbone amide N-H bond vectors for both the deoxy and carbonmonoxy forms of chain-specific, isotopically (15N and 2H) labeled tetrameric hemoglobin (Hb) using 15N-relaxation parameters [longitudinal relaxation rate (R1), transverse relaxation rate (R2), and heteronuclear nuclear Overhauser effect (NOE)] measured at two temperatures (29 and 34 degrees C) and two magnetic field strengths (11.7 and 14.1 T). In both deoxy and carbonmonoxy forms of human normal adult hemoglobin (Hb A), the amide N-H bonds of most amino acid residues are rigid on the fast time scale (nanosecond to picosecond), except for the loop regions and certain helix-helix connections. Although rigid in deoxy-Hb A, beta146His has been found to be free from restriction of its backbone motions in the CO form, presumably due to the rupture of its hydrogen bond/salt bridge network. We now have direct dynamics evidence for this structural transition of Hb in solution. While remarkably flexible in the deoxy state, alpha31Arg and beta123Thr, neighbors in the intradimer (alpha1beta1) interface, exhibit stiffening upon CO binding. These findings imply a role for alpha31Arg and beta123Thr in the intradimer communication but contradict the results from X-ray crystallography. We have also found that there is considerable flexibility in the intradimer (alpha1beta1) interface (i.e., B, G, and H helices and the GH corner) and possible involvement of several amino acid residues (e.g., alpha31Arg, beta3Leu, beta41Phe, beta123Thr, and beta146His) in the allosteric pathway. Several amino acid residues at the intradimer interfaces, such as beta109Val, appear to be involved in possible conformational exchange processes. The dynamic picture derived from the present study provides new insights into the traditional description of the stereochemical mechanism for the cooperative oxygenation of Hb A based on X-ray crystallographic results.


Assuntos
Carboxihemoglobina/química , Hemoglobina A/química , Hemoglobinas/química , Peptídeos/química , Aminoácidos/análise , Polarização de Fluorescência , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química
3.
Biophys J ; 92(6): L43-5, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17218465

RESUMO

The temperature dependence of the internal dynamics of recombinant human ubiquitin has been measured using solution NMR relaxation techniques. Nitrogen-15 relaxation has been employed to obtain a measure of the amplitude of subnanosecond motion at amide N-H sites in the protein. Deuterium relaxation has been used to obtain a measure of the amplitude of motion of methyl-groups in amino-acid side chains. Data was obtained between 5 and 55 degrees C. The majority of amide N-H and methyl groups show a roughly linear (R(2)>0.75) temperature dependence of the associated Lipari-Szabo model-free squared generalized-order parameter (O(2)) describing the amplitude of motion. Interestingly, for those sites showing a linear response, the temperature dependence of the backbone is distinct from that of the methyl-bearing side chains with the former being characterized by a significantly larger Lambda-value, where Lambda is defined as d ln(1 - O)/d lnT. These results are comparable to the sole previous such study of the temperature dependence of protein motion obtained for a calmodulin-peptide complex. This suggests that the distinction between the main chain and methyl-bearing side chains may be general. Insight into the temperature dependence is gathered from a simple two-state step potential model.


Assuntos
Modelos Químicos , Modelos Moleculares , Ubiquitina/química , Ubiquitina/ultraestrutura , Simulação por Computador , Humanos , Cinética , Movimento (Física) , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Ubiquitina/genética
4.
Biochemistry ; 43(23): 7307-27, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15182175

RESUMO

We have characterized the kinetic and thermodynamic consequences of adenine nucleotide interaction with the low-affinity and high-affinity nucleotide-binding sites in free SecA. ATP binds to the hydrolytically active high-affinity site approximately 3-fold more slowly than ADP when SecA is in its conformational ground state, suggesting that ATP binding probably occurs when the enzyme is in another conformational state during the productive ATPase/transport cycle. The steady-state ATP hydrolysis rate is equivalent to the rate of ADP release from the high-affinity site under a number of conditions, indicating that this process is the rate-limiting step in the ATPase cycle of the free enzyme. Because efficient protein translocation requires at least a 100-fold acceleration in the ATPase rate, the rate-limiting process of ADP release from the high-affinity site is likely to play a controlling role in the conformational reaction cycle of SecA. This release process involves a large enthalpy of activation, suggesting that it involves a protein conformational change, and two observations indicate that this conformational change is different from the well-characterized endothermic conformational transition believed to gate the binding of SecA to SecYEG. First, nucleotide binding to the low-affinity site strongly inhibits the endothermic transition but does not reduce the rate of ADP release. Second, removal of Mg(2+) from an allosteric binding site on SecA does not perturb the endothermic transition but produces a 10-fold acceleration in the rate of ADP release. These divergent effects suggest that a specialized conformational transition mediates the rate-limiting ADP-release process in SecA. Finally, ADP, 2'-O-(N-methylanthraniloyl)-adenosine-5'-diphosphate (MANT-ADP), and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) bind with similar affinities to the high-affinity site and also to the low-affinity site as inferred from their consistent effects in inhibiting the endothermic transition. In contrast, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) shows 100-fold weaker affinity than ADP for the high-affinity site and no detectable interaction with the low-affinity site at concentrations up to 1 mM, suggesting that this nonhydrolyzable analogue may not be a faithful mimic of ATP in its interactions with SecA.


Assuntos
Difosfato de Adenosina/análogos & derivados , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/farmacologia , Adenilil Imidodifosfato/metabolismo , Adenilil Imidodifosfato/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Cinética , Magnésio/metabolismo , Magnésio/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Conformação Proteica , Canais de Translocação SEC , Proteínas SecA , Serina Endopeptidases/metabolismo , Solubilidade , Temperatura , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
5.
Biochemistry ; 41(46): 13814-25, 2002 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-12427045

RESUMO

The temperature dependence of the fast internal dynamics of calcium-saturated calmodulin in complex with a peptide corresponding to the calmodulin-binding domain of the smooth muscle myosin light chain kinase is examined using 15N and 2H NMR relaxation methods. NMR relaxation studies of the complex were carried out at 13 temperatures that span 288-346 K. The dynamics of the backbone and over four dozen methyl-bearing side chains, distributed throughout the calmodulin molecule, were probed. The side chains show a much more variable and often considerably larger response to temperature than the backbone. A significant variation in the temperature dependence of the amplitude of motion of individual side chains is seen. The amplitude of motion of some side chains is essentially temperature-independent while many show a simple roughly linear temperature dependence. In a few cases, angular order increases with temperature, which is interpreted as arising from interactions with neighboring residues. In addition, a number of side chains display a nonlinear temperature dependence. The significance of these and other results is illuminated by several simple interpretative models. Importantly, analysis of these models indicates that changes in generalized order parameters can be robustly related to corresponding changes in residual entropy. A simple cluster model that incorporates features of cooperative or conditional motion reproduces many of the unusual features of the experimentally observed temperature dependence and illustrates that side chain interactions result in a dynamically changing environment that significantly influences the motion of internal side chains. This model also suggests that the intrinsic entropy of interacting clusters of side chains is only modestly reduced from that of independent side chain motion. Finally, estimates of protein heat capacity support the view that the major contribution to the heat capacity of protein solutions largely arises from local bond vibrations and solvent interactions and not from torsional oscillations of side chains.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Fragmentos de Peptídeos/metabolismo , Temperatura , Animais , Sítios de Ligação , Calmodulina/química , Galinhas , Entropia , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Quinase de Cadeia Leve de Miosina/química , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...